PI3K, Erk signaling in BMP7-induced epithelial-mesenchymal transition (EMT) of PC-3 prostate cancer cells in 2- and 3-dimensional cultures.
نویسندگان
چکیده
We reported previously that bone morphogenetic protein 7 (BMP7) could induce epithelial-mesenchymal transition (EMT) in PC-3 prostate cancer cells grown in tissue culture plates. In this study, we examined BMP7-induced morphological and molecular expression changes that are characteristic of EMT using these cells under both two- (2D) and three-dimensional (3D) culture conditions. Filamentous outgrowths from spheroid structures that were formed from PC-3 cells in 3D cultures were strikingly evident when the spheroids were exposed to extracellular BMP7. This morphological change in 3D was accompanied by down-regulation of E-cadherin, which is an essential adhesion molecule for the integrity of epithelial phenotype. Invasiveness of the cancer cells was significantly enhanced with BMP7 treatment along with activation and up-regulation of proteases such as MMP1, MMP13, and urokinase plasminogen activator. Signal transduction of EMT conversion was examined by the use of certain pathway-specific inhibitors. Of the chemical inhibitors tested, inhibitors of PI3 kinase and Erk were found to suppress BMP-induced morphological changes both in 2D and 3D conditions. These results suggest that, besides the Smad signaling pathways, BMP-induced activation of PI3K and Erk contribute to EMT morphologic conversion of the PC-3 prostate cancer cells. Together, the results support the notion that the complexity of EMT may be better evaluated in terms of both spatial and temporal processes in 3D cell culture models that are physiologically more relevant than the cell growth in tissue culture plates.
منابع مشابه
Epithelial to mesenchymal transition concept in Cancer: Review article
Owing to this fact that most of the mortalities in cancers are as a result of metastasis, study on the involved pathways in metastasis including Epithelial to mesenchymal transition (EMT) would be so critical and important. Up to date, several extensive studies have been carried out to determine the correlation between EMT and cancer and their results have shown that the EMT plays pivotal role ...
متن کاملα-Solanine inhibits invasion of human prostate cancer cell by suppressing epithelial-mesenchymal transition and MMPs expression.
α-Solanine, a naturally occurring steroidal glycoalkaloid found in nightshade (Solanum nigrum Linn.), was found to inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism involved in suppression of cancer cell metastasis by α-solanine remains unclear. This study investigates the suppression mechanism of α-solanine on motility of the human prostate cancer cell PC-3. Res...
متن کاملCrosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression
Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...
متن کاملAnalysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1
Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...
متن کاملNDRG2 Regulates the Expression of Genes Involved in Epithelial Mesenchymal Transition of Prostate Cancer Cells
Background: Metastasis is the main cause of prostate cancer (PCa) death. The inhibitory effect of N-myc downstream-regulated gene 2 (NDRG2) on the invasiveness properties of PCa cells has been demonstrated previously. However, its underlying mechanisms have not yet been investigated. The present study aimed to investigate the effects of NDRG2 overexpression on the expression of genes involved i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hormones & cancer
دوره 2 5 شماره
صفحات -
تاریخ انتشار 2011